Circa 2005

CM2.0,CM2.1 – state of the art physical climate models (1° ocn; 2° atm)

IPCC AR4 Models

Circa 2010

ESM2M,ESM2G

- Carbon cycle
- Vegetation feedback
- Ocean formulation

HIRAM

- High spatial resolution (atm only)
- Time-slice experiments
- Climate extremes

IPCC AR5
Models

CM3 (Primary Physical Model)

- Aerosols, indirect effect
- Stratosphere
- Convection, Land Model
- Atmospheric Chemistry

CM2.5

- High spatial resolution (coupled)
- Energetic ocean
- Variability and change in coupled system at high resolution

"CM4" ?? - drawing on what is learned from these various streams, and advancing

A Vision for MOM Evolution

GFDL is engaged in a multi-year project to unify capabilities from MOM5 with GFDL's generalized layered ocean model, GOLD.

- MOM6 is motivated by ocean/climate science challenges:
 - Wide range of time scales seasonal to decadal to centennial
 - Wide range of space scales e.g., mesoscale eddy resolving for global climate
 - Increasingly comprehensive e.g., coupling to biogeochemistry, ecosystem, icebergs and ice shelf models
- MOM6 will employ state-of-the-science numerical methods and physical parameterizations that are key to, for example,
 - respecting the integrity of ocean water-masses
 - capturing transient climate fluctuations
 - predicting climate variations
 - projecting future climate change
- MOM6 will incorporate GOLD's functionality for generalized vertical layers, and will retain a direct link to scientifically important MOM configurations.

GFDL's MOM Commitment

- Continue development of the MOM series, taking advantage of the scientific advances, expertise and experience.
- Making the state-of-the-art GFDL ocean models available to NCEP upon successful development and testing.
- Training in the use of the MOM series.
- Contribute to a unified NOAA Ocean-related modeling strategy, leading to useful NOAA products for scientific applications and predictions from the intraseasonal to interannual to decadal to centennial timescales.
- Collaborative research involving analysis of simulations with the newer models, and addressing NOAA's central challenges.
- Regular meetings with NCEP for monitoring progress in modeling.

The END

Current NOAA/ GFDL Climate Modeling including for CMIP5 and IPCC AR5 [Report in 2013]

<u>Advancing the understanding</u> of the climate and Earth System - the <u>processes</u>, <u>mechanisms</u>, <u>and interactions</u>

- → reliable global- to regional-scale projections and predictions:
- 1. Role of pollutant particulates and other short-lived species compared to long-lived gases such as carbon dioxide.
- 2. Carbon and other biogeochemical cycles, uptake of carbon by land and oceans, and their roles in climate change.
- 3. High-resolution, atmosphere-ocean models for seasonal- tocentennial variability, predictability and regional change.
- 4. High-resolution models for understanding "weather extremes" in climate (e.g. hurricanes, heat waves and droughts).

